
A novel QUIC traffic Classifier based on
Convolutional Neural Networks

Van TONG∗, Hai Anh TRAN†, Sami SOUIHI∗ and Abdelhamid MELLOUK∗
∗LISSI-TincNET Research Team

University of Paris-Est Crteil (UPEC), France

Email: van.tong@tincnet.fr, sami.souihi@u-pec.fr, mellouk@u-pec.fr
†Bach Khoa Cybersecurity Centre

Ha Noi University of Science and Technology, Hanoi, Vietnam

Email: anhth@soict.hust.edu.vn

Abstract—Nowadays, network traffic classification plays an
important role in many fields including network management,
intrusion detection system, malware detection system, etc. Most
of the previous research work concentrates on features ex-
tracted in the context of non-encrypted network traffic. However,
these features are not compatible with all kind of traffic
characterization. Google’s QUIC protocol (Quick UDP Internet
Connection protocol) is developed robustly and implemented in
many services of Google. Nevertheless, the emergence of this
protocol imposes many obstacles for traffic classification due
to the reduction of visibility for operators into network traffic,
so the port and payload-based traditional methods cannot be
applied to identify the QUIC-based services. To address this
issue, we proposed a novel technique for traffic classification
based on the convolutional neural network which combines the
feature extraction and classification phase into one system. The
proposed method uses the NetFlow and packet-based features to
improve the performance. In comparison with current methods,
the proposed method can identify some kind of QUIC-based
services such as Google Hangout Chat, Google Hangout Voice
Call, YouTube, File transfer and Google play music. Besides, the
proposed method can achieve the micro-averaging F1-score of
99.24 percent.

Index Terms—Traffic classification, QUIC, CNN, NetFlow

I. INTRODUCTION

Traffic classification [1] [2] [3] plays an important role

in troubleshooting the network issues for Internet service

provider (ISPs). Network operator need to define the type of

services in their network to quickly react to different issues in

the support of various enterprise goals. Traffic classification

can be used in intrusion detection systems [4] for detection

of denial of service attacks, botnet detection [5], customer’s

usage identification, etc. Besides, traffic classification is used

for the estimation of capacity for the network systems, adap-

tive network based the QoS (Quality of Service) of network

traffic or lawful interception.

The traffic classification approaches are divided into three

main categories: port-based, payload-based and flow static-

based methods. The port-based method which uses TCP or

UDP port numbers is one of the fastest and simplest approach

to continuous network monitoring. However, the accuracy

is not high because many services use unpredictable ports

[6], ports used by another application or the use of network

address port translation. To solve the drawbacks of port-

based flow traffic classification, the payload-based method

is proposed. This method inspects the packet’s payload to

identify the signature or syntax of each application’s packet

payload. The payload-based methods provide the high detec-

tion rate, but this approach is limited by some issues related

to updating the signature. With the rapid development of

machine learning, many research works investigate and apply

the flow static-based method [7]–[9] to classify the network

traffic. This approach relies on the information obtained from

the packets such as the number of byte in packet payload,

packet interval time, the direction of the packet, etc. Then,

these features are trained in the machine learning algorithms

to classify the network traffic into different kind of services.

The flow static-based method can deal with the issues of

port and payload-based methods including the invisibility of

payload or dynamic port.

Recently, Google has developed Quick UDP Internet Con-

nection (QUIC) [10]–[12], a new transport layer network pro-

tocol on the top of UDP. QUIC has many advantages related

to connection establishment, congestion control, multiplexing

without head of line blocking and connection migration. Be-

sides, QUIC also provides the security protection equivalent to

TLS (Transport Layer Security). The emergency of QUIC has

made the traditional traffic classification methods, especially

port and payload-based methods, unsuitable.

In this paper, we propose a new flow static-based method

based on convolutional neural network (CNN) to detect differ-

ent QUIC-based Google’s services including Google Hangout

(Chat, Voice call), File transfer, YouTube and Google Play

Music. First, we apply NetFlow-based features and random

forest algorithm to define the Google Hangout’ services due

to the difference of network flow of these services. Then, the

second stage uses the packet-based features and convolutional

neural network to classify the remainder into file transfer,

YouTube or Google play music.

The remainder of the paper is as follows. Section II presents

some related works and background related to traffic classifi-

cation and CNN. We introduce some characteristic of QUIC-

based services in Section III. Section IV describes our ap-



proach including the detail on NetFlow-based feature, packet-

based feature and CNN-based traffic classification method.

Section V shows experimental results and discusses some

related contents. The paper concludes with Section VI which

highlights some future work.

II. BACKGROUND AND RELATED WORK

A. Convolutional network

Convolutional network [13] [14] is known as convolutional

neural networks (CNN), a specialized artificial neural network

for data processing. It can be applied in some applications

such as pattern recognition, DGA botnet detection or traffic

classification [3]. Artificial neural network (ANN) [14] is

computing system inspired by the biological neural networks.

ANN comprises a high number of interconnected nodes to

learn the input and optimize the final output. The basic

structure of ANN contains three main layers consisting of

input layer, hidden layer, and output layer. The hidden layer

will make the decision from previous layer and weight in

order to improve the final output.

CNN comprises three main layers including convolutional

layer, polling layer, and fully-connected layer. The convolu-

tional layer is the core building block of CNN. This layer

consists of the various kernels which have a small receptive

field. The important characteristic is that the receptive field

will be extended through the full depth of the input. We can

detect one kind of feature of the input with one kernel, so the

convolutional layer with many kernels can extract a variety of

features at many spatial locations. The pooling layer replaces

the output with the summary statistic of nearby output. There

are two main pooling functions including max pooling and

average pooling function. The pooling layer help to make

the representation become approximately invariant to small

translation of the input. In fully-connected layer, each unit

has the connections to all activation of previous layers. It is

the multi-layer perceptron neural network (MLP) [15] which

illustrate the relationship between the previous layer with the

output.

B. Related work

In this section, we present some current related work in

the area of NetFlow-based method and convolutional neural

network. Besides, we describe the motivation to consider the

traffic classification using NetFlow-based features, packet-

based features, and convolutional neural network.

Williams et al. [7] presented the traffic classification using

machine learning algorithms to detect the FTP, Telnet, SMTP,

DNS, and HTTP. Some NetFlow-based features are extracted

to classify the network flows containing the protocol, flow

duration, flow volume in bytes and packets, packet length,

and inter-arrival time. Besides, they also investigate the per-

formance of different machine learning algorithms including

Naive Bayes, C4.5, Bayesian Network and Naive Bayes Tree.

Bashir1 et al. [16] proposed the NetFlow-based approach

to identify the BitTorrent activities. Although the performance

achieves over 90 percent, this approach only concentrates on

BitTorrent applications.

Lotfollahi et al. [17] proposed ”Deep Packet” to classify the

network traffic into different kind of traffic characterization

including email, chat, FTP, Skype, torrent, etc. They extract

the features from the packets and feed into the convolutional

neural network to identify the traffic characterization. How-

ever, the using of 1500 bytes in the packets can lead to

uncertain results because there are some similar attributes in

the same services.

Lopez-Martin et al. [3] presented the new traffic classifi-

cation based on the convolutional neural network to detect

and classify 108 services. In this research work, each flow

comprises 20 packets, and each packet contains 6 features

including source port, destination port, the number of bytes

in packet payload, TCP window size, inter-arrival time and

direction of the packet. However, the authors use the destina-

tion port which is similar to the same services to identify the

different services in the network.

All of the research work presented above only consider and

investigate the traffic classification using the convolutional

neural network and NetFlow-based methods in the context

of non-encrypted network traffic. Recently, the emergence

of QUIC results in many obstacles for traffic classification

because the payload of the packet is encrypted. Besides, all

services using QUIC comprise the similar port (443), so some

traditional approaches cannot apply to identify various kind

of services in the network.

In this paper, we propose the new traffic classification
based on the convolutional neural network which consists

of two main traffic classification stage and combines the

netflow and packet-based features to predict the QUIC-
based services. This approach can help to identify the
services and construct the adaptive network based on QoS.

III. CHARACTERISTIC OF SOME QUIC’S SERVICES

It is expected that there is the difference between some

QUIC-based services (Fig. 1). In this paper, we use the

collected dataset [18] containing Voice call, Chat (Google

Hangout), Video streaming (YouTube), Google play music and

File transfer.

When we capture the network flow traffic, we found some

interesting characteristic of QUIC-based services. In Voice

call of Google Hangout services, lots of UDP packets exist in

the network flows when an end-user call to some automatic

PBX phone number. I think that Google Hangout only uses

QUIC in the front-end to establish and finish the connections.

When the connection is established, the data is transferred

between two end-users using UDP protocol. The reason for

it is that QUIC has recently implemented in some Google’s

services, so the server of the companies whose automatic PBX

phone number belong to is not implemented and supported

QUIC.

In the other services, QUIC is used for establishing, finish-

ing the connections and transferring data between end-users.

However, there is some significant difference between these



Chat Voice Call File TransferVideo Streaming Music
Five kind of QUIC-based services

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Pe
rc

en
ta

ge
 o

f l
ar

ge
 p

ac
ke

ts
 in

 fl
ow

s

(a) Small packets.

Chat Voice Call File TransferVideo Streaming Music
Five kind of QUIC-based services

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pe
rc

en
ta

ge
 o

f l
ar

ge
 p

ac
ke

ts
 in

 fl
ow

s

(b) Large packets.

Fig. 1: Percentage of small and large packets in flows.

services. In Chat of Google Hangout services, all packets

transferred between end-users are supported by QUIC, but

the data transferred is not sufficient. Therefore, the majority of

packets in flows is small packets, which the length of packets

is less than 150 bytes. It is similar to Voice call service of

Google Hangout. In the Fig. 1a and 1b, the average percentage

of small and large packets in the flows of Chat and Voice call

are smaller than the figure for others. However, the standard

deviation of the percentage of small packets in flows of Chat

and Voice call services are larger than the figure for three

other services.

In the file transfer, video streaming and Google play music,

the server and end-users transfer large data frequently, so

there is the high number of large packets, which the length

of packets is bigger than 1000 bytes, in the network flows.

As in Fig. 1b, the average of large packets in the flows of

these services are over 60 percent. Moreover, the end-users

frequently send the small packets to the servers, so the number

of small packets of these services is approximately 30 percent,

except for Google play music (approximately 15 percent).

IV. THE NOVEL TRAFFIC CLASSIFICATION METHOD BASED

ON THE CONVOLUTIONAL NEURAL NETWORK

In this paper, we propose a new traffic classification method

based on the convolutional neural network which comprises

two multiclass classification stages. The first stage using

NetFlow-based features to define the Chat and Voice call

of Google Hangout. Then the remainder continues to go

through the second multiclass classification stages to classify

the network flows into the file transfer, video streaming or

Google play music.

A. Netflow-based features

In the first multiclass classification stage, we use the

NetFlow-based features to identify Chat and Voice call service

of Google Hangout. As in section III, we found that there is

some difference between five kinds of QUIC-based services,

especially packet length and payload length. Therefore, we

extract 8 features from the flows:

• From client to server

– Percentage of small packets in the flows.

– Percentage of medium packets in the flows.

– Percentage of large packets in the flows.

– Average payload length.

• From server to client

– Percentage of small packets in the flows.

– Percentage of medium packets in the flows.

– Percentage of large packets in the flows.

– Average payload length.

The small packet, medium packet and large packet which

the packet length range from 0 to 150, 150 to 1000 and over

1000 bytes, respectively.

B. Pre-processing

In this paper, we use the collected dataset which is captured

at data link layer. The dataset will be processed in the pre-

processing phase. There are four main steps in the pre-

processing phase including data link header removal, byte

conversation, normalization and zero padding.

The data-link header contains some information related to

the physic layer which plays an important role in forwarding

the frames in the network. However, this information is

useless for traffic classification, so the data-link header will be

filtered in the data link header removal step. Besides, we only

use the payload of QUIC packet because we found that other

information in QUIC packet is useless for the classification.

Then the packet in the dataset will be converted from bit to

byte in order to reduce the input size. For better performance,

all packet bytes are normalized using dividing by 255, the

maximum value for a byte. The CNN requires the same input

length while the packet length in the dataset varies from over

50 to 1392 bytes. Therefore, the dataset will be added some

zero values in the zero padding step to have the similar length

of each packet. The packet with packet length less than 1400,

are padded zero at the end. Finally, each packet comprises

1400 values corresponding to 1400 features.

C. The proposed method

In this section, we present the traffic classification based

on the convolutional neural network (Fig. 2a). To identify the



Network Traffic

Netflow-based Feature 
Extraction

Random Forest

Is Google Hangout
Services?

Multiclass Classification

Majority Rule

Chat

Voice 
Call

Pre-processing 

Data link header 
removal

Byte Conversation

Normalization

Zero Padding

Netflow-based 
features

Packet-based 
features

Video
Streaming

File
Transfer

Google Play
Music

Convolutional Layer

Input

Convolutional Layer

Average Pooling 
Layer

Flatter Layer

Fully Connected 
Layer

Fully Connected 
Layer

Fully Connected 
Layer

Output

(a)

Feature Reduction
Three features

Softmax

(b)

Fig. 2: (a) Traffic classification method using the netflow and packet-based features; (b) The multiclass classification.

Google Hangout services, the network flow will be processed

in the NetFlow-based feature extraction. This step extracts

8 NetFlow-based features (as described in the previous sub-

section) representing for each flow. Then, these features are

feed into the random forest algorithm [19] to classify the

network flows into the Chat, Voice call service of Google

Hangout and the third group (File transfer, Video streaming,

and Google play music). As described in section III, there

is the difference between the Google Hangout services and

the remainder, so we use the random forest as a three-class

classifier. Besides, the network traffic is processed in the pre-

processing stage to extract 1400 features representing for each

packet. Afterward, these packet-based features continue to go

to the feature reduction to decrease the size of packet-based

features. The feature reduction consists of three main layers

including the convolutional layer, average pooling layer, and

fully connected layer. This stage converts 1400 features of

each packet into three features.

After the first classification of random forest algorithm, the

NetFlow-based features and three feature obtained from the

feature reduction are combined and transferred to the multi-

class classification. The structure of this stage, which is the

one-dimensional convolutional neural network, is described as

in Fig. 2b. The architecture of one-dimensional convolutional

neural network contains five essential layers:

• Convolutional layer: The first convolutional layer is a

one-dimensional layer with 550 kernels of size 5, the

stride of 1. The input vector has 11 features, so the output

of this layer is a two-dimensional tensor with the size

of 7 x 550. The second convolutional layer is a one-

dimensional layer with 100 kernels of size 4, the stride

of 1. The output of this layer is a two-dimensional tensor

with the size of 4 x 100.

• Average pooling layer: After going through the first

two convolutional layer, the data is feed into the one-

dimensional average pooling layer with the size of 2, the

stride of 1. The output of this layer is a two-dimensional

tensor with the size of 3 x 100.

• Flatter layer: This layer flatten the output obtained from

the average pooling layer into a one-dimensional vector

with 300 features.

• Fully connected layer: There are three fully connected

layers with 100, 500, and 3 neurons, respectively.

• Softmax: This layer is a generalization of the logistic

function that squashes an n-dimensional vector into to

an n-dimensional vector with element values from 0 to

1.

In CNN, the convolutional layer, average pooling layer, and

flatter layer are similar to the feature extraction stage. Besides,

the fully connected layer and softmax are the classifier that

indicates the relationship between the input feature and the

output to classify the network flows into different kind of

services.

In multiclass classification, we combine the NetFlow-based

feature and the packet-based features in order to identify the

services. In each flow, we extract the packet-based features



of 10 packets and add the NetFlow-based features into each

packet, so each packet is represented by the NetFlow and

packet-based features. The majority rule stage classifies the

flows based on the ten packets of each flow. The majority rule

is the decision rule that selects the alternatives with high votes.

If the majority of packets among 10 packets are classified as

any service, the flows will be assigned to that service. If the

vote of three services is equal, we use the probability of the

packet classified to identify the services. The detail of majority

rule is described as in Algorithm 1. The label(id) is the label

of flows after classification, and probij are the probability

of a packeti classified as servicej in the flows. argmax is

the function that returns the index of the highest value in the

input.

Algorithm 1 Majority rule

Require: id, FlowId, label, FlowLabel, service, Count,
prob, Prob, a

1: while id in FlowId do
2: for j = 1 to 3 do
3: for i = 1 to 10 do
4: if label(id) is servicej then
5: aij = 1

6: else
7: aij = 0

8: end if
9: end for

Countj =

10∑

i=1

aij

Probj =

10∑

i=1

probij

10: end for
11: if all Countj unique in Count then
12: FlowLabel(id) = argmax(Count)
13: else
14: FlowLabel(id) = argmax(Prob)
15: end if
16: end while

V. EXPERIMENTAL RESULTS

A. Dataset specification

In the experiment, we build the testbed and collect the

network flows to build the real dataset [18] during three weeks

(starting March 2018). To capture the network flows of video

streaming, chat, and voice call services, we use Selenium

WebDriver [20] in Google Chrome running on Ubuntu 16.04

OS. Besides, we also use quic-go [21] to transfer some files

from server to client using QUIC and capture the network

flows of file transfer services. We captured approximately

150GB of network traffic including over 20,000 flows with

five kinds of QUIC-based services. The detail is described

as in Table I. In the first classification using random forest

algorithm, the dataset is divided into 5-fold. Concretely, the

training phase comprises 20 percent of the dataset, and the

testing phase accounts for 80 percent of the dataset. In the

multiclass classification, the dataset is also divided into 5-

fold. The training, validation, and testing comprise 45, 5, 50

percent of the dataset, respectively.

TABLE I: Dataset specification.

Services Number of flows
Chat 2,783

Voice call 2,608
File transfer 4,451

Video streaming 5,844
Google play music 4,349

Our proposed method is written in Python using Keras li-

brary [22] and scikit-learn tools [23]. Besides, all experiments

are implemented in a workstation (Intel(R) Xeon(R) CPU E5-

2640 v3 @ 2.6 GHz and 16 GB of RAM) running Ubuntu

16.04.

B. Performance measures

In this section, we present some measures to evaluate the

performance of our proposed method including Precision,

Recall, and F1-score. Precision is the percentage of relevant

flows that are retrieved, while recall is the percentage of

retrieved flows that are relevant. F1-score represents a har-

monic mean between precision and recall. The detail of these

parameters are described as in equation 1, 2, 3.

Precision =
TP

TP + FP
. (1)

Recall =
TP

TP + FN
. (2)

F1− score =
2

1/Recall + 1/Precision
. (3)

The quality of overall classification can be evaluated in two

ways [24]. In macro-averaging, a metric is averaged over all

classes that are treated equally. Micro-averaging is based on

the cumulative True Positive (TP), False Positive (FP), True

Negative (TN) and False Negative (FN) of all dataset.

C. Experimental results

In our proposed method, random forest and CNN work

together in combination. Its basic motivation is to retain

the high accuracy on different kind of QUIC-based services.

This section is dedicated to evaluating the performance of

our proposed method and highlighting its advantages over

different scenarios including different parts of the dataset and

a various loss function.

First, we use the random forest algorithm and NetFlow-

based features to identify the Google Hangout services con-

taining Chat and Voice call. Table II indicates the performance

of the random forest algorithm using netflow-based features.

The NetFlow-based features consist of 8 features related



to the proportion of packets in the flows, and the average

packet length in the flows (Section III). The performance of

Chat and Voice call service are impressive, over 96 percent.

However, the recall of Chat service is the lowest with 96.54

percent. As in Fig. 1, Chat, and Voice call service have

some similar region, so some flows of Voice call service are

identified into Chat service. This leads to the lower result

for Chat service. Especially, the performance of third group

(file transfer, video streaming, and Google play music) are the

highest with over 99.5 percent. The reason for it is that there

is the slight difference in 8 NetFlow-based features of Chat,

Voice call service, and third group. As a result, the micro and

macro-averaging precision, recall and f1-score achieve over

98 percent.

TABLE II: Precision, Recall and F1-score for random forest

algorithm using netflow-based features.

Class Precision Recall F1-score Number of flows
Chat 0.9871 0.9654 0.9762 2,227

Voice call 0.9871 0.9880 0.9875 2,086
Third group 0.9957 0.9997 0.9977 11,351

Micro-averaging 0.9934 0.9934 0.9934 15,664
Macro-averaging 0.9899 0.9843 0.9871

Second, the remainder of the dataset are investigated in two

scenarios to define the file transfer, video streaming or Google

play music. In the first scenarios, we investigate the influence

of different features on our proposed method. We implement

five dataset of possible features and appreciate which features

indicate the high performance. The Figure 3 indicates five

dataset including the first 300, 600, 900, 1,200 and 1,400

features in payload of QUIC packets. There is an upward trend

in the micro and macro-averaging precision, recall and f1-

score in five datasets. The performance with the dataset of the

first 300 and 900 features are not good, only over 70 percent

in the micro and macro-averaging f1-score. The precision

of video streaming service with the dataset of the first 300

features is 64.34 percent. Some flows of video streaming

service are classified as flows of file transfer service, so this

reduces the recall of file transfer service (only 26.52 percent)

in the experiment of the first 300 features. It is similar to the

dataset of the first 900 features. When the number of features

increases to over 1,200, the precision, recall, and f1-score are

above 94 percent. Especially, the performance with the dataset

of 1400 features is the highest with over 97 percent in five

kinds of the dataset. The discriminant power in 1400 features

are larger than the figure for others, so the micro and macro-

averaging precision, recall and f1-score are the highest, with

approximately 99 percent.
In the second scenario, we investigate the influence

of some loss functions [25] on the convolutional

neural network (Figure 4). As above analyzation, the

performance of the dataset with 1400 features are the

highest in five kinds of the dataset, so we use this

dataset in the second scenario. We implement three kind

of loss functions containing categorical_hinge

Fig. 3: Macro-averaging precision, macro-averaging recall and

macro-averaging f1-score in different datasets.

(Hinge), mean_squared_error (MSE) and

sparse_categorical_crossentropy (SCCE).

In this scenario, we evaluate the performance of three kinds

of loss function to select the appropriate loss function for

our proposed method. Hinge loss is the loss function which

is notably used in Support Vector Machine (SVM) for

”maximum-margin” classification. In Fig. 4, the performance

of hinge loss is not good because the micro and macro-

averaging precision, recall, and f1-score are only 20 percent.

Especially, the flows of file transfer cannot be detected. Mean

squared error is the loss function that measures the average

of the squares of the errors. The performance of MSE loss

is higher than the figure for hinge loss. Moreover, the flows

in video streaming services is lower than the figure for other

services. The reason for it is that flows of video streaming

are treated as the flows of Google play music, so the recall

of Google play music is only 94.73 percent. A noticeable

feature is that the performance of SCCE is the highest in

three loss function. The precision, recall, and f1-score of

three services are over 96 percent. As a result, the micro and

macro-averaging of SCCE are the largest with approximate

99 percent.

Fig. 4: Macro-averaging precision, macro-averaging recall and

macro-averaging f1-score in different loss functions.



Through two scenarios, we found that the dataset with 1400

features and the SCCE loss function are appropriate for our

proposed method. Figure 5 indicates the overall results of our

proposed methods with the dataset of 1400 features and SCCE

loss function on five kinds of QUIC-based services. The micro

and macro-averaging of precision, recall, and f1-score are

approximately 99 percent, an impressive result. These results

are calculated based on scikit-learn [23] using the results of

random forest stage and multiclass classification stage.

Fig. 5: Precision, Recall and F1-score of our proposed method

on five kind of QUIC-based services.

VI. CONCLUSION

This paper presents the novel traffic classification method

using the convolutional neural network, NetFlow, and packet-

based features to identify some QUIC-based services. There

are two main classification stages in our proposed method.

The first stage uses random forest and netflow-based features

to detect the Google Hangout services. The second stage uses

the convolutional neural network and combines the NetFlow,

packet-based features with some alternatives to classify the

network flows into video streaming, Google play music or

file transfer. The experiments demonstrate that our proposed

method can detect five kinds of QUIC-based services with

high accuracy (approximately 99 percent).

Despite the high performance, our proposed method has

some disadvantages. The usage of NetFlow-based features

leads to the increase of the runtime of processing and

classification. We use all packets in the flows, so this will

impose some obstacles when the number of packets in flows

is huge. In the future, we will construct the larger dataset,

deeply investigate the NetFlow-based features, and compare

the performance of our proposed method with some traditional

traffic that can make our proposed method more reliable.

REFERENCES

[1] T. T. Nguyen and G. Armitage, “A survey of techniques for internet
traffic classification using machine learning,” IEEE Communications
Surveys & Tutorials, vol. 10, no. 4, pp. 56–76, 2008.

[2] A. Dainotti, A. Pescape, and K. C. Claffy, “Issues and future directions
in traffic classification,” IEEE network, vol. 26, no. 1, 2012.

[3] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret,
“Network traffic classifier with convolutional and recurrent neural
networks for internet of things,” IEEE Access, vol. 5, pp. 18 042–18 050,
2017.

[4] V. Paxson, “Bro: a system for detecting network intruders in real-time,”
Computer networks, vol. 31, no. 23-24, pp. 2435–2463, 1999.

[5] W. Lu, M. Tavallaee, G. Rammidi, and A. A. Ghorbani, “Botcop:
An online botnet traffic classifier,” in Communication Networks and
Services Research Conference, 2009. CNSR’09. Seventh Annual. IEEE,
2009, pp. 70–77.

[6] T. Karagiannis, A. Broido, N. Brownlee, K. C. Claffy, and M. Faloutsos,
“Is p2p dying or just hiding?[p2p traffic measurement],” in Global
Telecommunications Conference, 2004. GLOBECOM’04. IEEE, vol. 3.
IEEE, 2004, pp. 1532–1538.

[7] N. Williams, S. Zander, and G. Armitage, “A preliminary performance
comparison of five machine learning algorithms for practical ip traffic
flow classification,” ACM SIGCOMM Computer Communication Re-
view, vol. 36, no. 5, pp. 5–16, 2006.

[8] Y.-s. Lim, H.-c. Kim, J. Jeong, C.-k. Kim, T. T. Kwon, and Y. Choi,
“Internet traffic classification demystified: on the sources of the dis-
criminative power,” in Proceedings of the 6th International COnference.
ACM, 2010, p. 9.

[9] C. Wang, T. Xu, and X. Qin, “Network traffic classification with
improved random forest,” in Computational Intelligence and Security
(CIS), 2015 11th International Conference on. IEEE, 2015, pp. 78–81.

[10] G. Carlucci, L. De Cicco, and S. Mascolo, “Http over udp: an experi-
mental investigation of quic,” in Proceedings of the 30th Annual ACM
Symposium on Applied Computing. ACM, 2015, pp. 609–614.

[11] R. Hamilton, J. Iyengar, I. Swett, and A. Wilk, “Quic: A udp-based se-
cure and reliable transport for http/2,” IETF, draft-tsvwg-quic-protocol-
02, 2016.

[12] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar et al., “The quic transport
protocol: Design and internet-scale deployment,” in Proceedings of the
Conference of the ACM Special Interest Group on Data Communication.
ACM, 2017, pp. 183–196.

[13] K. O’Shea and R. Nash, “An introduction to convolutional neural
networks,” arXiv preprint arXiv:1511.08458, 2015.

[14] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016, http://www.deeplearningbook.org.

[15] L. M. Belue and K. W. Bauer Jr, “Determining input features for
multilayer perceptrons,” Neurocomputing, vol. 7, no. 2, pp. 111–121,
1995.

[16] A. Bashir, C. Huang, B. Nandy, and N. Seddigh, “Classifying p2p activ-
ity in netflow records: A case study on bittorrent,” in Communications
(ICC), 2013 IEEE International Conference on. IEEE, 2013, pp. 3018–
3023.

[17] M. Lotfollahi, R. Shirali, M. J. Siavoshani, and M. Saberian, “Deep
packet: A novel approach for encrypted traffic classification using deep
learning,” arXiv preprint arXiv:1709.02656, 2017.

[18] V. Tong, “Network flow of quic,”
https://drive.google.com/drive/folders/1cwHhzvaQbi-
ap8yfrj2vHyPmUTQhaYOj?usp=sharing, April 2017.

[19] A. Liaw, M. Wiener et al., “Classification and regression by random-
forest,” R news, vol. 2, no. 3, pp. 18–22, 2002.

[20] Selenium, “Webdriver,” https://www.seleniumhq.org/projects/webdriver/,
April 2017.

[21] lucas clemente, “A quic implementation in pure go,”
https://github.com/lucas-clemente/quic-go, April 2017.

[22] F. CholletKeras, “Keras,” https://github.com/fchollet/keras, 2016.
[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of machine learning
research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[24] M. Sokolova and G. Lapalme, “A systematic analysis of performance
measures for classification tasks,” Information Processing & Manage-
ment, vol. 45, no. 4, pp. 427–437, 2009.

[25] F. CholletKeras, “loss function,” https://keras.io/losses/, 2016.


